Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338772

RESUMEN

Coating layers consisting of a crystalline apatite matrix with immobilized basic fibroblast growth factor (bFGF) can release bFGF, thereby enhancing bone regeneration depending on their bFGF content. We hypothesized that the incorporation of fluoride ions into apatite crystals would enable the tailored release of bFGF from the coating layer depending on the layer's fluoride content. In the present study, coating layers consisting of fluoride-incorporated apatite (FAp) crystals with immobilized bFGF were coated on a porous collagen sponge by a precursor-assisted biomimetic process using supersaturated calcium phosphate solutions with various fluoride concentrations. The fluoride content in the coating layer increased with the increasing fluoride concentration of the supersaturated solution. The increased fluoride content in the coating layer reduced its solubility and suppressed the burst release of bFGF from the coated sponge into a physiological salt solution. The bFGF release was caused by the partial dissolution of the coating layer and, thus, accompanied by the fluoride release. The concentrations of released bFGF and fluoride were controlled within the estimated effective ranges in enhancing bone regeneration. These findings provide useful design guidelines for the construction of a mineralized, bFGF-releasing collagen scaffold that would be beneficial for bone tissue engineering, although further in vitro and in vivo studies are warranted.


Asunto(s)
Apatitas , Fluoruros , Apatitas/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Colágeno/química , Ingeniería de Tejidos
2.
ACS Sens ; 8(4): 1585-1592, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37029744

RESUMEN

Formaldehyde (FA) is a deleterious C1 pollutant commonly found in the interiors of modern buildings. C1 chemicals are generally more toxic than the corresponding C2 chemicals, but the selective discrimination of C1 and C2 chemicals using simple sensory systems is usually challenging. Here, we report the selective detection of FA vapor using a chemiresistive sensor array composed of modified hydroxylamine salts (MHAs, ArCH2ONH2·HCl) and single-walled carbon nanotubes (SWCNT). By screening 32 types of MHAs, we have identified an ideal sensor array that exhibits a characteristic response pattern for FA. Thus, trace FA (0.02-0.05 ppm in air) can be clearly discriminated from the corresponding C2 chemical, acetaldehyde (AA). This system has been extended to discriminate methanol (C1) from ethanol (C2) in combination with the catalytic conversion of these alcohols to their corresponding aldehydes. Our system offers portable and reliable chemical sensors that discriminate the subtle differences between C1 and C2 chemicals, enabling advanced environmental monitoring and healthcare applications.


Asunto(s)
Nanotubos de Carbono , Hidroxilamina , Aldehídos , Formaldehído , Hidroxilaminas
3.
J Appl Toxicol ; 43(5): 649-661, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36317230

RESUMEN

Crystalline silica is an important cause of serious pulmonary diseases, and its toxic potential is known to be associated with its surface electrical properties. However, in vivo data clarifying the relevance of silica's toxic potential, especially its long-term effects, remain insufficient. To investigate the contribution of physico-chemical property including surface potential on the hazard of nanocrystalline silica, we performed single intratracheal instillation testing using five different crystalline silicas in a rat model and assessed time-course changes in pulmonary inflammation, lung burden, and thoracic lymph node loads. Silica-nanoparticles were prepared from two commercial products (Min-U-Sil5 [MS5] and SIO07PB [SPB]) using three different pretreatments: centrifugation (C), grinding (G), and surface dissolving (D). The five types of silica particles-MS5, MS5_C, SPB_C, SPB_G, and SPB_D-were intratracheally instilled into male F344 rats at doses of 0 mg/kg (purified water), 0.22 mg/kg (SPB), and 0.67, 2, or 6 mg/kg (MS5). Bronchoalveolar lavage, a lung burden analysis, and histopathological examination were performed at 3, 28, and 91 days after instillation. Granuloma formation was present in MS5 group at 91 days after instillation, although granuloma formation was suppressed in MS5_C group, which had a smaller particle size. SPB_C induced severe and progressive inflammation and kinetic lung overload, whereas SPB_G and SPB_D induced only slight and transient acute inflammation. Our results support that in vivo toxic potential of nanosilica by intratracheal instillation may involve with surface electrical properties leading to prolonged effect and may not be dependent not only on surface properties but also on other physico-chemical properties.


Asunto(s)
Neumonía , Dióxido de Silicio , Ratas , Masculino , Animales , Ratas Endogámicas F344 , Dióxido de Silicio/efectos adversos , Líquido del Lavado Bronquioalveolar/química , Pulmón , Neumonía/inducido químicamente , Neumonía/patología , Inflamación/inducido químicamente , Inflamación/patología , Granuloma/patología , Intubación Intratraqueal
4.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555621

RESUMEN

A simple, area-specific coating technique for fluoridated apatite (FAp) on teeth would be useful in dental applications. Recently, we achieved area-specific FAp coating on a human dentin substrate within 30 min by a laser-assisted biomimetic (LAB) process; pulsed Nd:YAG laser irradiation in a fluoride-containing supersaturated calcium phosphate solution (FCP solution). The LAB-processed, FAp-coated dentin substrate exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. In the present study, we refined the LAB process with a combination of a dental diode laser and a clinically approved light-absorbing molecule, indocyanine green (ICG). A micron-thick FAp layer was successfully formed on the dentin surface within only 3 min by the refined LAB process, i.e., dental diode laser irradiation in the FCP solution following ICG treatment. The ICG layer precoated on the dentin substrate played a crucial role in inducing rapid pseudo-biomineralization (FAp layer formation) on the dentin surface by absorbing laser light at the solid-liquid interface. In the refined LAB process, the precoated ICG layer was eliminated and replaced with the newly formed FAp layer composed of vertically oriented pillar-like nanocrystals. Cross-sectional ultrastructural analysis revealed a smooth interface between the FAp layer and the dentin substrate. The refined LAB process has potential as a tool for the tooth surface functionalization and hence, is worth further process refinement and in vitro and in vivo studies.


Asunto(s)
Apatitas , Láseres de Estado Sólido , Humanos , Dentina/efectos de la radiación , Biomineralización , Estudios Transversales , Microscopía Electrónica de Rastreo
5.
ACS Omega ; 7(35): 31260-31270, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092562

RESUMEN

The regulation of H2 evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H2 production. We have successfully generated Au-Cu nanoalloys using a laser ablation method and deposited them on TiO2 photocatalyst films (Au x Cu100-x /TiO2). The Au-Cu/TiO2 films were employed as photocatalysts for H2 production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H2 evolution rate for Au20Cu80/TiO2 is archived to 62,500 µmol h-1 g-1 per photocatalyst weight. The remarkable performance of Au20Cu80/TiO2 may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au-Cu surface on TiO2 is vital to supply the photoexcited electrons of TiO2 to its surface for H2 evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts.

6.
Mater Sci Eng C Mater Biol Appl ; 116: 111170, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806265

RESUMEN

A technique for implementing biocompatible and antibacterial functions to a targeted region on tooth surfaces has potential in dental treatments. We have recently demonstrated pseudo-biomineralization, i.e., the growth of an apatite layer on a human dentin substrate by a laser-assisted biomimetic (LAB) process, based on pulsed laser irradiation in a supersaturated CaP solution. In this study, pseudo-biomineralization was induced in the presence of fluoride ions using the LAB process in order to fabricate an antibacterial fluoride-incorporated apatite (FAp) layer on the dentin surface. After processing for 30 min, a micron-thick FAp layer was formed heterogeneously at the laser-irradiated solid-liquid interface via pseudo-biomineralization. A time-course study revealed that the LAB process first eliminated the pre-existing organic layer, while allowing fluoride incorporation into the dentin surface within 1 min. Within 5 min, FAp nanocrystals precipitated on the dentin surface. Within 30 min, these nanocrystals acquired a pillar-like structure that was weakly oriented in the direction normal to the substrate surface to form a dense micron-thick layer. This layer was integrated seamlessly with the underlying dentin without any apparent gaps. The FAp layer exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. The proposed LAB process is expected to be a useful new tool for tooth surface functionalization via facile and area-specific pseudo-biomineralization.


Asunto(s)
Antibacterianos , Biomineralización , Rayos Láser , Antibacterianos/farmacología , Apatitas , Dentina , Fluoruros , Humanos
7.
Mater Sci Eng C Mater Biol Appl ; 116: 111194, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806285

RESUMEN

Amorphous calcium phosphate (ACP) plays an important role in biomineralization within the three-dimensional (3D) collagen network in human hard tissues, and exhibits osteoconductivity. Porous collagen sponges coated with ACP nanoparticles could be considered as potential scaffolds for use in bone tissue engineering. In this study, such composite materials were fabricated via homogeneous ACP precipitation using a supersaturated calcium phosphate (CaP) solution. Homogeneous ACP precipitation was induced in situ within the sponges by a temperature-controlled coating process composed of two steps. In the first step, the CaP solution was cooled to 4 °C to suppress precipitation until the solution penetrated fully into the sponge's internal pores. In the second step, the CaP solution was warmed up to 25 °C with continuous shaking to induce ACP precipitation within the sponges. The resulting sponges were therefore coated with ACP nanoparticles on their inner and outer surfaces. A simulated body fluid (SBF) test indicated osteoconductivity of the collagen sponges coated with ACP nanoparticles. Further, ACP-coated collagen sponges immobilizing basic fibroblast growth factor (bFGF) were fabricated using the CaP solution supplemented with bFGF. The fabricated sponges allowed the sustained release of bFGF in a culture medium and enhanced proliferation of osteoblastic MC3T3-E1 cells. Such ACP-coated collagen sponges have the potential to be used as scaffolds in bone tissue engineering if pursued for further in vitro and in vivo studies.


Asunto(s)
Nanopartículas , Ingeniería de Tejidos , Fosfatos de Calcio , Colágeno , Humanos , Porosidad , Andamios del Tejido
8.
ACS Appl Mater Interfaces ; 12(18): 20806-20823, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32212617

RESUMEN

Atomically dispersed Pd additives significantly enhanced the hydrogen sensing performance of a Co3O4 nanoparticle film, and their electronic along with catalytic roles were comprehensively investigated based on a series of systematic experiments. Aggregates of Co3O4 nanoparticles (approximately 3 nm in size) with homogeneously dispersed Pd additives at concentrations in the range of 1-20% (on a molar basis with respect to Co) were generated in the gas phase via reactive pulsed laser ablation of Co-Pd alloy targets in He/O2 mixtures. The form of the Pd could be modified from single atoms to oxide clusters (1-2 nm), and the effects of these additives on the hydrogen sensing properties of thick films prepared by direct deposition were examined. The highest hydrogen sensing performance was obtained at 5% Pd loading, where single Pd atoms were present at the maximum density. Further Pd loading resulted in the formation of Pd oxide clusters and degraded the sensitivity. X-ray photoelectron spectroscopy and Pd K-edge X-ray absorption spectroscopy showed that single Pd atoms in the Pd4+ state at Co3+ sites on the Co3O4 nanoparticle surfaces donated electrons to the Co3O4 valence band. The greater concentration of free electrons led to an increase in the concentration of ionosorbed oxygen under dry air. Consequently, more ionosorbed oxygen was available for reaction with hydrogen, enhancing sensitivity. In situ X-ray absorption spectroscopy data confirmed that approximately 10% of the single Pd atoms in the Pd4+ state were reduced to Pd2+ during exposure to 1000 ppm H2, implying that a Pd4+ ↔ Pd2+ catalytic redox cycle accelerates the water formation reaction during hydrogen sensing. The present results provide deeper insights and understanding of the effects of noble metal additives on gas sensing, while highlighting the unique role of single-atom additives.

9.
Mater Sci Eng C Mater Biol Appl ; 105: 110061, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31546361

RESUMEN

A technique for tooth surface modification with biocompatible calcium phosphate (CaP) has huge potential in dental applications. Recently, we achieved a facile and area-specific CaP coating on artificial materials by a laser-assisted biomimetic process (LAB process), which consists of pulsed laser irradiation in a supersaturated CaP solution. In this study, we induced the rapid biomineralization on the surface of human dentin by using the LAB process. A human dentin substrate was immersed in a supersaturated CaP solution, then its surface was irradiated with weak pulsed laser light for 30 min (LAB process). Ultrastructural analyses revealed that the pristine substrate had a demineralized collagenous layer on its surface due to the previous EDTA surface cleaning. After the LAB process, this collagenous layer disappeared and was replaced with a submicron-thick hydroxyapatite layer. We believe that the laser irradiation induced pseudo-biomineralization through the laser ablation of the collagenous layer, followed by CaP nucleation and growth at the dentin-liquid interface. The mineralized layer on the dentin substrate consisted of needle-like hydroxyapatite nanocrystals, whose c-axes were weakly oriented along the direction perpendicular to the substrate surface. This LAB process would offer a new tool enabling tooth surface modification and functionalization through the in situ pseudo-biomineralization.


Asunto(s)
Dentina/citología , Durapatita/química , Rayos Láser , Diente/química , Humanos , Propiedades de Superficie
10.
Eur J Nucl Med Mol Imaging ; 46(8): 1672-1677, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31044266

RESUMEN

PURPOSE: To evaluate the feasibility of short whole-body bone scan acquisition times using a novel gamma camera with cadmium-zinc-telluride (CZT) semiconductor detectors. METHODS: We retrospectively enrolled 78 consecutive patients with prostate cancer who underwent bone scintigraphy using a whole-body gamma camera with CZT detectors. After acquisition of list-mode data with 180 s per bed position, anterior and posterior whole-body images were reconstructed using the first 5%, 10%, 25%, 50%, 75% and 100% of the list-mode data. Two experienced nuclear medicine physicians interpreted the images, and interrater agreement and the diagnostic value of the images were determined. Quantitative artificial neural network (ANN) values, bone scan indexes (BSI) and hotspot numbers (HsN) were also calculated by automated diagnostic software. RESULTS: Excellent interrater reliabilities of the visual assessments were obtained for the 100%, 75%, 50%, and 25% images (κ = 0.88, 0.88, 0.88 and 0.88, respectively). The 5% images also showed high diagnostic value (sensitivity 0.94, specificity 0.84 and accuracy 0.86). Intraclass correlation coefficients (ICC) between the 100% images and the reduced acquisition time images were evaluated in quantitative analyses, and excellent correlations were observed for ANN value in the 75% images (ICC 0.77), for BSI in all the reduced acquisition time images (75%, 50%, 25%, 10% and 5%; ICC 0.99, 0.99, 0.99, 0.96 and 0.75, respectively), and for HsN in the 75%, 50%, 25% and 10% images (ICC 0.99, 0.99, 0.98 and 0.90, respectively). CONCLUSION: Whole-body gamma cameras with CZT detectors have the potential to reduce image acquisition times and the dose of radioisotope injected for bone scans.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Cámaras gamma/normas , Neoplasias de la Próstata/patología , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Imagen de Cuerpo Entero/instrumentación , Anciano , Anciano de 80 o más Años , Neoplasias Óseas/secundario , Cadmio , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Telurio , Zinc
11.
Heliyon ; 4(8): e00734, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30140767

RESUMEN

OBJECTIVES: Dental composite resins with better biocompatibility and osteoconductivity have been sought in endodontic treatments. This study aimed to develop a technique to produce the osteoconductive resin surfaces through calcium phosphate (CaP) coating using a laser-assisted biomimetic (LAB) process. METHODS: Light-cured, acrylic-based composite resins were used as substrates. The resin substrate was subjected to a LAB process comprising Nd:YAG pulsed laser irradiation in a supersaturated CaP solution. The LAB-processed substrate was immersed for 3 days in a simulated body fluid (SBF) for the preliminary osteoconductivity assessment. RESULTS: After irradiation for 30 min, the resin surfaces were partly coated with a newly formed CaP layer. The coating layer contained hydroxyapatite as the main crystalline phase and the coating coverage depended on the laser wavelength and the type of resin. The LAB-processed CaP-coated surface exhibited apatite-forming ability in SBF. CONCLUSIONS: LAB process is effective for CaP coating on light-cured dental composite resins and improving their osteoconductivity. CLINICAL SIGNIFICANCE: The LAB process is a potential new tool to create a cementum-like osteoconductive surface on dental composite resins.

12.
Acta Biomater ; 79: 148-157, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30149210

RESUMEN

Surface functionalization of teeth with fluoride-incorporated apatite layers displays great potential in treatments and prevention of dental disorders. In this study, we used a sintered hydroxyapatite (sHA) substrate as a model material of teeth, and established a rapid and area-specific coating technique of fluoride-incorporated apatite layers by using a laser-assisted biomimetic (LAB) process. In this technique, a sHA substrate was irradiated on the surface with a Nd:YAG pulsed UV laser for 30 min in supersaturated calcium phosphate (CaP) solutions with various fluoride concentrations. The fluoride concentration in the CaP solution was varied to control morphology, crystalline structure, and fluoride content of the resulting layers. Without fluoride in the CaP solution, an octacalcium phosphate (OCP) layer with a flake-like structure was formed on the laser-irradiated surface of the substrate. The addition of fluoride (1000 µM and 3000 µM) to the CaP solution led to the formation of fluoride-incorporated apatite layers with an enamel-like needle-like nanostructure. The fluoride-incorporated apatite layers adhered firmly to the sHA surface and reduced acid dissolution of the sHA substrate by acting as a protective covering. Additionally, the layers released fluoride ions for more than 24 h, and exhibited antibacterial activity relative to a caries-causing bacterium, namely Streptococcus mutans. Thus, our LAB process can potentially act as a new tool for functionalization of tooth surfaces. STATEMENT OF SIGNIFICANCE: We used a sintered hydroxyapatite (sHA) substrate as a model material of teeth, and established a rapid and area-specific coating technique of fluoride-incorporated apatite layers on the sHA surface by using our laser-assisted biomimetic (LAB) process. In this process, pulsed laser was utilized to accelerate seeded crystal growth in supersaturated calcium phosphate solutions supplemented with NaF. The thus-fabricated fluoride-incorporated apatite layers consisted of enamel-like needle-like nanocrystals with c-axis orientation. These fluoride-incorporated apatite layers adhered firmly to the sHA surface, reduced acid dissolution of the sHA substrate by acting as a protective covering, and exhibited antibacterial activity against Streptococcus mutans through the fluoride release. Thus, our LAB process can potentially act as a new tool for functionalization of tooth surfaces.


Asunto(s)
Apatitas/farmacología , Biomimética/métodos , Materiales Biocompatibles Revestidos/farmacología , Fluoruros/farmacología , Rayos Láser , Diente/fisiología , Ácidos/química , Adhesividad , Antibacterianos/farmacología , Calcio/análisis , Fosfatos de Calcio/farmacología , Durapatita/química , Iones , Pruebas de Sensibilidad Microbiana , Nefelometría y Turbidimetría , Fósforo/análisis , Propiedades de Superficie , Diente/efectos de los fármacos , Difracción de Rayos X
13.
Nano Lett ; 15(10): 6302-8, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26308495

RESUMEN

The dielectric constant is a key parameter that determines both optical and electronic properties of materials. It is desirable to tune electronic properties though dielectric engineering approach. Here, we present a systematic approach to tune carrier mobilities of hybrid inorganic/organic materials where layered two-dimensional transition-metal dichalcogenide TiS2 is electrochemically intercalated with polar organic molecules. By manipulating the dielectric mismatch using polar organic molecules with different dielectric constants, ranging from 10 to 41, the electron mobility of the TiS2 layers was changed three times due to the dielectric screening of the Coulomb-impurity scattering processes. Both the overall thermal conductivity and the lattice thermal conductivity were also found to decrease with an increasing dielectric mismatch. The enhanced electrical mobility along with the decreased thermal conductivity together gave rise to a significantly improved thermoelectric figure of merit of the hybrid inorganic/organic materials at room temperature, which might find applications in wearable electronics.

14.
Nat Mater ; 14(6): 622-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25849369

RESUMEN

Organic semiconductors are attracting increasing interest as flexible thermoelectric materials owing to material abundance, easy processing and low thermal conductivity. Although progress in p-type polymers and composites has been reported, their n-type counterpart has fallen behind owing to difficulties in n-type doping of organic semiconductors. Here, we present an approach to synthesize n-type flexible thermoelectric materials through a facile electrochemical intercalation method, fabricating a hybrid superlattice of alternating inorganic TiS2 monolayers and organic cations. Electrons were externally injected into the inorganic layers and then stabilized by organic cations, providing n-type carriers for current and energy transport. An electrical conductivity of 790 S cm(-1) and a power factor of 0.45 mW m(-1) K(-2) were obtained for a hybrid superlattice of TiS2/[(hexylammonium)x(H2O)y(DMSO)z], with an in-plane lattice thermal conductivity of 0.12 ± 0.03 W m(-1) K(-1), which is two orders of magnitude smaller than the thermal conductivities of the single-layer and bulk TiS2. High power factor and low thermal conductivity contributed to a thermoelectric figure of merit, ZT, of 0.28 at 373 K, which might find application in wearable electronics.

15.
Nanotechnology ; 24(37): 375602, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23965575

RESUMEN

NiO nanorods with extremely high crystallinity were grown by rapid thermal oxidation through exposure of Ni nanoparticles (NPs) heated above 400° C to oxygen. Oxidation proceeds by nucleation of a NiO island on a Ni NP that grows anisotropically to produce a NiO nanorod. This process differs completely from that under mild oxidation conditions, where the surface of the NPs is completely covered with an oxide film during the early stage of oxidation. The observed novel behaviour strongly suggests an interfacial oxidation mechanism driven by the dissolution of adsorbed oxygen into the Ni NP sub-surface region, subsequent diffusion and reaction at the NiO/Ni interface. The early oxidation conditions of metal NPs impose a significant influence on the entire oxidation process at the nanoscale and are therefore inherently important for the precise morphological control of oxidized NPs to design functional nanomaterials.

16.
Langmuir ; 27(8): 5076-80, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21413711

RESUMEN

Micrometer and submicrometer crystalline silicon spheres were fabricated by selective laser heating of irregular silicon particles in liquid medium. TEM, SEM, XRD, and XPS characterized the structure and morphology of the prepared silicon spheres. The results suggested that they were spherical with a single crystalline structure. In this study, the formation mechanism of the spheres is analyzed, and the process parameters are optimized to obtain high-quality silicon spheres. A theoretical deduction regarding the relationship between critical laser energy density and particle size is also discussed, by which we can predict that larger spheres can be obtained at higher laser energy densities.

17.
Org Lett ; 8(26): 6139-42, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17165949

RESUMEN

[Structure: see text] A novel alicyclic chiral C2-symmetric piperazine, (S,S)-7, is designed and synthesized from L-proline. Benzoylation of a series of cyclic and acyclic meso-1,2-diols with a catalytic amount of (S,S)-7 and CuCl2 provided optically active monobenzoates with high enantioselectivity.


Asunto(s)
Piperazinas/química , Acilación , Diseño de Fármacos , Oxidación-Reducción , Estereoisomerismo
18.
Phys Rev Lett ; 96(11): 115501, 2006 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-16605837

RESUMEN

A bidecahedral morphology in which two truncated decahedral structures share two tetrahedral units, involving two types of symmetric-tilt grain boundaries, is observed as a novel and rare morphology of gold nanoparticles frozen from liquid in free space. This low-symmetry polyhedral morphology with eight multiply twinned domains is intermediate between the icosahedral and decahedral motifs.

19.
J Phys Chem B ; 109(28): 13403-5, 2005 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16852675

RESUMEN

We have recently developed a method to fabricate monodispersed Ni/NiO core-shell nanoparticles by pulsed laser ablation. In this report, the size-dependent magnetic properties of monodispersed Ni/NiO core-shell nanoparticles were investigated. These nanoparticles were formed in two steps. The first was to fabricate a series of monodispersed Ni nanoparticles of 5 to 20 nm in diameter using a combination of laser ablation and size classification by a low-pressure differential mobility analyzer (DMA). The second step was to oxidize the surfaces of the Ni particles in situ to form core-shell structures. A superconducting quantum interference device (SQUID) magnetometer was used to measure the magnetic properties of nanostructured films prepared by depositing the nanoparticles at room temperature. Ferromagnetism was observed in the magnetic hysteresis loop of the nanostructured films composed of core-shell nanoparticles with core diameters smaller than the superparamagnetic limit, which suggests the spin of Ni core was weakly exchange coupled with antiferromagnetic NiO shell. In contrast, smaller nanoparticles with core diameters of 3.0 nm exhibited superparamagnetism. The drastic change in the hysteresis loops between field-deposited and zero-field-deposited samples was attributable to the strong anisotropy that developed during the magnetic-field-assisted nanostructuring process.

20.
J Phys Chem B ; 109(44): 20669-72, 2005 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-16853677

RESUMEN

The oxidation process of Cu nanoparticles has been investigated by means of an in-situ X-ray diffraction method. A self-limiting oxidation process involving an unusually drastic decrease (about 4 orders in magnitude) in the oxidation rate was observed at 298 K, whereas a non-self-limiting oxidation emerged at 323 K with a rate of at least 4 orders in magnitude faster than 298 K. The drastic slowing at 298 K and the big differences between the two close temperatures in the oxidation kinetics were found to be directly correlated to whether the compressive stress in the Cu(2)O(111) layers that commensurately formed on the Cu(111) surface is relaxed or not.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...